

jmchen@ucdavis.edu

Heat load affects measures of aversion in dairy cows

Jennifer M. Chena, Karin E. Schützb, and Cassandra B. Tuckera

^aDepartment of Animal Science, University of California, Davis, USA; ^bAgResearch Ltd., Hamilton, New Zealand

AVERSION RACE: GENERAL OVERVIEW

PURPOSE: evaluate the emotional valence (+ vs. –) animals associate with a stimulus

PRINCIPLE: animals will show willingness to approach rewarding (+) stimuli and **reluctance** to approach **aversive** (–) stimuli

METHOD: animals are tested individually and repeatedly in a narrow raceway in a between-subjects design

Measures:

- 1. TRANSIT TIME (TT): amount of time it takes animals to complete the race
- 2. HANDLING PRESSURE (HP): effort from a handler to encourage animals to move forward

Examples of handling pressure:

- pressure applied, scored on a standardized ordinal scale
- amount of time spent actively pushing animals
- number of times animals were prodded

Example treatments

Shouting person

Person offering feed

Emotional valence

aversive

Control: silent, still person

neutral

Predicted response

TRANSIT TIME, HANDLING PRESSURE

Do previous studies support these predictions?

Treatment (vs. control)

Using transit time alone

Using both TT & HP

➤ Dairy cattle¹¹

✓ Sheep^{12, 13}

✓ Dairy cattle^{8, 9, 10}

aversive

- ✓ Dairy cattle¹ ✓ Sheep²
- ✓ Red deer³
- ➤ Red deer⁴
- ✓ Laboratory rats^{5, 6}
- ? Laying hens⁷
- ✓ Dairy cattle¹⁰
- ✓ Sheep¹⁴

HOW DOES HEAT LOAD AFFECT COWS' WILLINGNESS TO APPROACH SPRAY?

All analyses: MIXED (SAS 9.4) using trials 2-10 (non-naïve to treatments)

 Dairy cattle tested 10× each Air temperature: 21 to 44°C Pre-test: 20 min in holding pen, with shade or without 7 treatments: **Low-impact spray** (1.1 kPa): $n = \overline{7} + \overline{7}$ **High-impact spray** (8.9 kPa): n = 9 + 8**Unsprayed controls**: feed (rewarding) n = 8, shouting handler (aversive) n = 8, neither (neutral) n = 8Nozzle + Handler End |Start Holding

pen

A handler moved behind the cow as she traveled through the shaded race. At the end, another handler administered treatments for 1 min.

HANDLING PRESSURE confirmed feed was rewarding: handlers applied pressure half as often when feed was offered (binary measure: applied or not; overall P = 0.001). Pairwise differences between the feed treatment vs. others: **P < 0.01; *P < 0.05; †P < 0.07. There were no other treatment differences ($P \ge 0.725$). Based on this, the feed treatment was excluded from analyses **2 4 5**

Proportion of trials with handling pressure applied 1.0 0.5 Feed (sun) (shade) (shade)

Handling pressure did not change with heat load ($P \ge 0.129$)

TRANSIT TIME did not reflect differences in reward or aversion (overall P = 0.424)

Instead, TRANSIT TIME reflected heat load:

- In warmer weather, transit time increased overall (by 13 s per 10°C increase in air temperature; P = 0.043)
 - As respiration rate û, unsprayed cows moved more slowly (by 7 s per 10 breaths/min increase; P = 0.017), but sprinklers mitigated this response $(P \ge 0.283)$
- Average speed to approach non-feed treatments was 0.1 m/s compared to 0.5 to 0.7 m/s in other studies^{9, 11}

To our knowledge, ours is the 1st study conducted in warm weather

Cows may have walked more slowly to avoid heat gain, as body temperature 1 with physical activity 15, 16

STRENGTHS

- + Advantage over preference tests: allows inference of emotional valence (+ vs. -) animals associate with a stimulus
- + Few technical requirements (raceway, stopwatch)
- + Has been used successfully in many species (cattle, sheep, deer, rats, and limited evidence in poultry)

WEAKNESSES

- Not validated to measure sustained emotional states
- Requires large sample size for between-subjects design
- Cattle become lethargic in warmer weather, and transit time reflects this rather than aversion

REFERENCES

²Hargreaves, A. L. & G. D. Hutson 1990. Appl. Anim. Behav. Sci. 26:243. ³Pollard, J. C., et al. 1994. Appl. Anim. Behav. Sci. 39:63 ⁴Grigor, P. N., et al. 1998. Appl. Anim. Behav. Sci. 56:255. ⁵Karsh, E. B. 1962. J. Comp. Physiol. Psychol. 55:44. ⁶Anderson, D. C., et al. 1967. J. Comp. Physiol. Psychol. 63:282. ⁷Petherick, J. C., et al. 1992. Appl. Anim. Behav. Sci. 33:357. ⁸Arnold, A., et al. 2008. Appl. Anim. Behav. Sci. 109:201. ⁹Goonewardene, L. A., et al. 1999. Appl. Anim. Behav. Sci. 64:159. ¹⁰Pajor, E. A., et al. 2000. Appl. Anim. Behav. Sci. 69:89. ¹¹Schwartzkopf-Genswein, K. S., et al. 1997. J. Anim. Sci. 75:2064. ¹²Rushen, J. 1986. Appl. Anim. Behav. Sci. 15:315. ¹³Rushen, J. & P. Congdon 1986. Aust. J. Exp. Agric. 26:535. ¹⁴Hutson, G. D. 1985. Appl. Anim. Behav. Sci. 14:263. ¹⁵Mader, T. L., et al. 2005. Prof. Anim. Sci. 21:339.

¹⁶Schütz, K. E., et al. 2011. J. Dairy Sci. 94:273.

¹Pascoe, P. J. & W. N. McDonnell. 1986. Can. J. Vet. Res. 50:275.

